- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000002010000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Giorgetti, Luca (3)
-
Bischoff, Marcel (2)
-
Del Vecchio, Simone (2)
-
Flyamer, Ilya M (1)
-
Gabriele, Michele (1)
-
Grosse-Holz, Simon (1)
-
Hansen, Anders S (1)
-
Jusuf, James M (1)
-
Mach, Pia (1)
-
Mirny, Leonid A (1)
-
Zechner, Christoph (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
3D genomics methods such as Hi-C and Micro-C have uncovered chromatin loops across the genome and linked these loops to gene regulation. However, these methods only measure 3D interaction probabilities on a relative scale. Here, we overcome this limitation by using live imaging data to calibrate Micro-C in mouse embryonic stem cells, thus obtaining absolute looping probabilities for 36,804 chromatin loops across the genome. We find that the looped state is generally rare, with a mean probability of 2.3% and a maximum of 26% across the quantified loops. On average, CTCF-CTCF loops are stronger than loops between cis-regulatory elements (3.2% vs. 1.1%). Our findings can be extended to human stem cells and differentiated cells under certain assumptions. Overall, we establish an approach for genome-wide absolute loop quantification and report that loops generally occur with low probabilities, generalizing recent live imaging results to the whole genome.more » « less
-
Bischoff, Marcel; Del Vecchio, Simone; Giorgetti, Luca (, Annales Henri Poincaré)Discrete subfactors include a particular class of infinite index subfactors and all finite index ones. A discrete subfactor is called local when it is braided and it fulfills a commutativity condition motivated by the study of inclusion of Quantum Field Theories in the algebraic Haag–Kastler setting. In Bischoff et al. (J Funct Anal 281(1):109004, 2021), we proved that every irreducible local discrete subfactor arises as the fixed point subfactor under the action of a canonical compact hypergroup. In this work, we prove a Galois correspondence between intermediate von Neumann algebras and closed subhypergroups, and we study the subfactor theoretical Fourier transform in this context. Along the way, we extend the main results concerning 𝛼-induction and 𝜎-restriction for braided subfactors previously known in the finite index case.more » « less
-
Bischoff, Marcel; Del Vecchio, Simone; Giorgetti, Luca (, Journal of Functional Analysis)
An official website of the United States government
